
Code Injection on Windows
INDEX

1. Introduction 2
2. Requirements 2
3. Overview 2
4. Procedure 3

4.1 Functions and structures 3
4.2 Enabling of debug privileges 5
4.3 Obtaining process’s handle 6
4.4 Allocating and writing of data and code 7
4.5 Creation of the remote thread 8

5. Conclusions 8
6. Contributions 9
7. Example code 9

06/02/17 Francesco Pompò | https://francesco.cc �1

https://francesco.cc


1. Introduction
The purpose of this document is to describe one of the most basic code injection techniques by 
using some of the APIs provided by the Windows operating system for process interaction.

Code injection can be used in case it is necessary to make the detection of a payload more 
difficult within a compromised system, because it should not be sought inside a single process.

It is possible to find an example of a more sophisticated use of the above technique into the 
“migrate” feature of meterpreter, which completely moves the execution of the agent into a 
process chosen by the attacker.

Used in symbiosis with some evasion mechanics, the method works well even in presence of anti-
virus solutions with sandboxing components.
Instead, in presence of solutions with hooking components, it could not achieve the same results 
as some particular API calls chains can be captured and compared with some signatures.

2. Requirements
In order to success it is important to have the correct permissions for writing and executing code 
into another process’s memory. It is also needed to disable any kind of optimization during the 
compiling and linking phases of the project.

3. Overview
The implementation described in the document is the following list of operations:
- To enable debug privileges through the use of OpenProcessToken, LookupPrivileges and 

AdjustTokenPrivileges APIs.
- To obtain a handle of the process through the use of OpenProcess API.
- To allocate the appropriate memory areas (for data and code) through the use of the 

VirtualAllocEx API.
- To write the data and the code through the use of the WriteProcessMemory API.
- To proceed to the creation of a new thread on the process through the use of the 

CreateRemoteThread API.

06/02/17 Francesco Pompò | https://francesco.cc �2

https://francesco.cc


4. Procedure
In this section of the document will be explained the most important parts of the attached example 
source code.

4.1 Functions and structures
The core of the project are a function and a data structure which will be both injected into the 
remote process. 
The data structure will be passed as parameter to the function.

This is the definition of a type of function which is identical to the CreateProcess API. This 
definition will be useful to declare functions that can accept the same type and number of 
parameters and that can return the same type of value.

This is a type of data structure named InjectData. It contains a _CreateProcess type of function 
and a path which will be used to find the executable to be started.

06/02/17 Francesco Pompò | https://francesco.cc �3

https://francesco.cc


This is the function that will be injected into the remote process. It accepts an InjectData structure 
as a parameter and uses the injData->__CreateProcess pointer by passing injData->path as a 
parameter to it in order to start the specified executable.
In summary, this function makes possible the start of an arbitrary executable from a remote 
process.

06/02/17 Francesco Pompò | https://francesco.cc �4

https://francesco.cc


4.2 Enabling of debug privileges
It is important to enable the debug privileges on the injector’s process, because in some cases it 
may not be possible to obtain a handle to the remote process without them.
The following is a generic function to solve the problem.

The function makes use of the OpenProcessToken, LookupPrivilegeValue and 
AdjustTokenPrivilege APIs to modify the privileges of its process.

06/02/17 Francesco Pompò | https://francesco.cc �5

https://francesco.cc


4.3 Obtaining process’s handle
The next step is to obtain the PID of the process in which it is interested to operate, the example 
code refers to the APIs declared inside the “tlhelp32.h” header, but it is not the only way to face 
the problem.

In summary the function creates a snapshot of the processes’ list in a precise instant and 
subsequently they are compared one by one with the name of the sought process (procname).
When a match is found, the PID is returned, otherwise zero is the return value.

Once the PID is obtained you just need a call to the OpenProcess API by using the correct 
parameters.

In this example the specified access rights are PROCESS_ALL_ACCESS for keeping it simple, 
but PROCESS_CREATE_THREAD, PROCESS_VM_OPERATION and PROCESS_VM_WRITE 
should be enough for the task.

06/02/17 Francesco Pompò | https://francesco.cc �6

https://francesco.cc


4.4 Allocating and writing of data and code
The second-last step is to allocate the memory needed for data and code and to write them.
This is made possible by an appropriate use of the VirtualAllocEx and WriteProcessMemory 
APIs.

During the first call to VirtualAllocEx it is asked an allocation of memory equal to the dimension of 
the injData structure and respectively, during the second call, equal to the dimension of the 
injectFn function.
The injectFn dimension is calculated simply by placing a dummy function, the injectFnEnd, after it 
and by doing a subtraction of their pointers. 

This way, by disabling all the optimizations of the linker, it becomes possible to calculate the exact 
dimension of the injectFn function.

The two calls to the WriteProcessMemory API are needed to write the data contained in 
(&)injData and injectFn respectively to the pData and pFn pointers, but into the remote process 
space.

06/02/17 Francesco Pompò | https://francesco.cc �7

https://francesco.cc


4.5 Creation of the remote thread
At the end, making sure that the shellcode doesn’t make any reference to memory areas that are 
not accessible from another process (strings, functions, etc.), it is possible to invoke the 
CreateRemoteThread API by specifying the pFn pointer as the function and the pData pointer as 
the parameter.

5. Conclusions
Even if basic, this technique it is not obsolete, because it can happen often to not being able to use 
conventional payloads during some penetration test phases, and making other processes doing 
sensitive operations can make a difference. 

06/02/17 Francesco Pompò | https://francesco.cc �8

https://francesco.cc


6. Contributions
Thanks to Paolo Campo for a more clear syntax in the Italian version of this document.

7. Example code
You can find the example source code in the following repository:
https://github.com/pfrankw/code_injection_example

06/02/17 Francesco Pompò | https://francesco.cc �9

https://github.com/pfrankw/code_injection_example
https://francesco.cc

